Зелёный элемент. Как мир переходит на водород и чем это грозит России

Физические и химические свойства

При обычных условиях водород — легкий (плотность при нормальных условиях 0, 0899 кг/м3) бесцветный газ. Температура плавления –259, 15 °C, температура кипения –252, 7 °C. Жидкий водород (при температуре кипения) обладает плотностью 70, 8 кг/м3 и является самой легкой жидкостью. Стандартный электродный потенциал Н2 в водном растворе принимают равным 0. Водород плохо растворим в воде: при 0 °C растворимость составляет менее 0, 02 см3/мл, но хорошо растворим в некоторых металлах (губчатое железо и других), особенно хорошо — в металлическом палладии (около 850 объемов водорода в 1 объеме металла). Теплота сгорания водорода равна 143, 06 МДж/кг.Существует в виде двухатомных молекул Н2. Константа диссоциации Н2 на атомы при 300 К 2, 56·10-34. Энергия диссоциации молекулы Н2 на атомы 436 кДж/моль. Межъядерное расстояние в молекуле Н2 0, 07414 нм.Так как ядро каждого атома Н, входящего в состав молекулы, имеет свой спин, то молекулярный водород может находиться в двух формах: в форме ортоводорода (о-Н2) (оба спина имеют одинаковую ориентацию) и в форме параводорода (п-Н2) (спины имеют разную ориентацию). При обычных условиях нормальный водород представляет собой смесь 75% о-Н2 и 25% п-Н2. Физические свойства п- и о-Н2 немного различаются между собой. Так, если температура кипения чистого о-Н2 20, 45 К, то чистого п-Н2 — 20, 26 К. Превращение о-Н2 в п-Н2 сопровождается выделением 1418 Дж/моль теплоты.В научной литературе неоднократно высказывались соображения о том, что при высоких давлениях (выше 10 ГПа) и при низких температурах (около 10 К и ниже) твердый водород, обычно кристаллизующийся в гексагональной решетке молекулярного типа, может переходить в вещество с металлическими свойствами, возможно, даже сверхпроводник. Однако пока однозначных данных о возможности такого перехода нет.Высокая прочность химической связи между атомами в молекуле Н2 (что, например, используя метод молекулярных орбиталей, можно объяснить тем, что в этой молекуле электронная пара находится на связывающей орбитали, а разрыхляющая орбиталь электронами не заселена) приводит к тому, что при комнатной температуре газообразный водород химически малоактивен. Так, без нагревания, при простом смешивании водород реагирует (со взрывом) только с газообразным фтором:H2 + F2 = 2HF + Q.Если смесь водорода и хлора при комнатной температуре облучить ультрафиолетовым светом, то наблюдается немедленное образование хлороводорода НСl. Реакция водорода с кислородом происходит со взрывом, если в смесь этих газов внести катализатор — металлический палладий (или платину). При поджигании смесь водорода и кислорода (так называемый гремучий газ) взрывается, при этом взрыв может произойти в смесях, в которых содержание водорода составляет от 5 до 95 объемных процентов. Чистый водород на воздухе или в чистом кислороде спокойно горит с выделением большого количества теплоты:H2 + 1/2O2 = Н2О + 285, 75 кДж/мольС остальными неметаллами и металлами водород если и взаимодействует, то только при определенных условиях (нагревание, повышенное давление, присутствие катализатора). Так, с азотом водород обратимо реагирует при повышенном давлении (20-30 МПа и больше) и при температуре 300-400 °C в присутствии катализатора — железа:3H2 + N2 = 2NH3 + Q.Также только при нагревании водород реагирует с серой с образованием сероводорода H2S, с бромом — с образованием бромоводорода НBr, с иодом — с образованием иодоводорода НI. С углем (графитом) водород реагирует с образованием смеси углеводородов различного состава. С бором, кремнием, фосфором водород непосредственно не взаимодействует, соединения этих элементов с водородом получают косвенными путями.При нагревании водород способен вступать в реакции с щелочными, щелочноземельными металлами и магнием с образованием соединений с ионным характером связи, в составе которых содержится водород в степени окисления –1. Так, при нагревании кальция в атмосфере водорода образуется солеобразный гидрид состава СаН2. Полимерный гидрид алюминия (AlH3)x — один из самых сильных восстановителей — получают косвенными путями (например, с помощью алюминийорганических соединений). Со многими переходными металлами (например, цирконием, гафнием и др.) водород образует соединения переменного состава (твердые растворы).Водород способен реагировать не только со многими простыми, но и со сложными веществами. Прежде всего надо отметить способность водорода восстанавливать многие металлы из их оксидов (такие, как железо, никель, свинец, вольфрам, медь и др.). Так, при нагревании до температуры 400-450 °C и выше происходит восстановление железа водородом из его любого оксида, например:Fe2O3 + 3H2 = 2Fe + 3H2O.Следует отметить, что восстановить водородом из оксидов можно только металлы, расположенные в ряду стандартных потенциалов за марганцем. Более активные металлы (в том числе и марганец) до металла из оксидов не восстанавливаются.Водород способен присоединяться по двойной или тройной связи ко многим органическим соединениям (это — так называемые реакции гидрирования). Например, в присутствии никелевого катализатора можно осуществить гидрирование этилена С2Н4, причем образуется этан С2Н62Н4 + Н2 = С2Н6.Взаимодействием оксида углерода(II) и водорода в промышленности получают метанол:2Н2 + СО = СН3ОН.В соединениях, в которых атом водорода соединен с атомом более электроотрицательного элемента Э (Э = F, Cl, O, N), между молекулами образуются водородные связи (два атома Э одного и того же или двух разных элементов связаны между собой через атом Н: Э’… Н… Э», причем все три атома расположены на одной прямой). Такие связи существуют между молекулами воды, аммиака, метанола и др. и приводят к заметному возрастанию температур кипения этих веществ, увеличению теплоты испарения и т. д.Редактировать

Биологическая роль

Биологическое значение водорода определяется тем, что он входит в состав молекул воды и всех важнейших групп природных соединений, в том числе белков, нуклеиновых кислот, липидов, углеводов. Примерно 10 % массы живых организмов приходится на водород. Способность водорода образовывать водородную связь играет решающую роль в поддержании пространственной четвертичной структуры белков, а также в осуществлении принципа комплементарности в построении и функциях нуклеиновых кислот (то есть в хранении и реализации генетической информации), вообще в осуществлении «узнавания» на молекулярном уровне. Водород (ион Н+) принимает участие в важнейших динамических процессах и реакциях в организме — в биологическом окислении, обеспечивающим живые клетки энергией, в фотосинтезе у растений, в реакциях биосинтеза, в азотфиксации и бактериальном фотосинтезе, в поддержании кислотно-щелочного равновесия и гомеостаза, в процессах мембранного транспорта. Таким образом, наряду с кислородом и углеродом водород образует структурную и функциональную основы явлений жизни.Водород. ИзотопыАвторы: , Редактировать

Водород в таблице Менделеева

В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. То есть иными словами водород и его атомный вес является краеугольным камнем таблицы Менделеева, той точкой опоры, на основе которой великий химик создал свою систему. Поэтому не удивительно, что в таблице Менделеева водород занимает почетное первое место.

< src=»https://www.poznavayka.org/wp-content/uploads/2019/05/Vodorod-v-tablitse-Mendeleeva.jpg»/>

Помимо этого водород имеет такие характеристики:

  • Атомная масса водорода составляет 1,00795.
  • У водорода в наличии три изотопа, каждый из которых обладает индивидуальными свойствами.
  • Водород – легкий элемент имеющий малую плотность.
  • Водород обладает восстановительными и окислительными свойствами.
  • Вступая в химические реакции с металлами, водород принимает их электрон и стает окислителем. Подобные соединения называются гидратами.

Получение

Водород можно получить многими способами. В промышленности для этого используют природные газы, а также газы, получаемые при переработке нефти, коксовании и газификации угля и других топлив. При производстве водорода из природного газа (основной компонент — метан) проводят его каталитическое взаимодействие с водяным паром и неполное окисление кислородом:CH4 + H2O = CO + 3H2 и CH4 + 1/2 O2 = CO2 + 2H2Выделение водорода из коксового газа и газов нефтепереработки основано на их сжижении при глубоком охлаждении и удалении из смеси газов, сжижаемых легче, чем водород. При наличии дешевой электроэнергии водород получают электролизом воды, пропуская ток через растворы щелочей. В лабораторных условиях водород легко получить взаимодействием металлов с кислотами, например, цинка с соляной кислотой.Редактировать

Светлое будущее грязного продукта

Резкое снижение выбросов СО2 в атмосферу, подразумеваемое Парижским соглашением, зависит от глобального перехода к «зелёной» энергетике. По оценкам WRI (Института мировых ресурсов) на транспорт приходится 15,9% мировых выбросов, на промышленность — 18%, строительство и ЖКХ дают 20,4%. Это значит, что необходимо не только внедрение возобновляемых источников энергии, важно перевести все эти отрасли на энергоресурсы с низкой долей углерода. Без этого снизить антропогенные выбросы вдвое к 2050 году не получится.

Водород — это просто идеальное решение этой проблемы. Результат его сгорания — пар, то есть вода. Более того, самый перспективный получения водорода — электролиз воды. А это создаёт нечто наподобие замкнутого цикла, когда ресурсы газа будут восполняться при его потреблении. Никакой другой «зеленый» энергоресурс не дает такой возможности. Биотопливо, коксовый газ, аммиак — все при сжигании выбрасывают в атмосферу целый букет парниковых газов.

ploshhadi-dlya-hraneniya-ogfu-tys.-m²-1.png

Есть только одна загвоздка: в отличие от нефти или газа, больших запасов водорода в естественных условиях просто нет. Водород сейчас — это результат переработки углеводородов со всем скопом сопутствующих проблем. Самым популярным методом получения этого газа остается паровая конверсия метана (95% получаемого водорода). При этом в атмосферу выбрасывается огромное количество углерода. Оставшиеся 5% приходятся в основном на не менее грязный риформинг нефти и нефтепродуктов. Небольшую долю процента составляют электролиз воды — самый массовый из «зелёных» методов получения водорода — и лабораторные биореакторы.

Такое соотношение не устраивает большинство стран, включившихся в водородную гонку. Поэтому стратегии достижения «безуглеродного» будущего нацелены на получение водорода максимально «зелёным» способом.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий